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Abstract

In this paper we address the problem of optimal reconstruction of a quantum
state from the result of a single measurement, when the original quantum state
is known to be a member of some specified set. This process provides both
classical information about the state and a reproduction of that state. A suitable
figure of merit for this process is the fidelity, which is the probability that
the state we construct on the basis of the measurement result is found by a
subsequent test to match the original state. We consider the maximization of
the fidelity for a mirror symmetric set of three pure qubit states, but find that our
results are more generally applicable. In contrast to previous examples, we find
that the strategy which minimizes the probability of erroneously identifying the
state does not generally maximize the fidelity.

PACS numbers: 03.67.Hk, 03.65.—a

1. Introduction

The principles governing communication through a quantum channel have been extensively
studied. The transmitting agent (Alice) selects a state from a predefined set {|/;)} with
relative frequency p; and transmits a quantum system prepared in this state through the
quantum channel. The classical information that is Alice’s message is encoded on a string of
such states. The receiving agent (Bob) knows the set of possible signal states {|/;)} and their
relative frequencies p;. These p; are the prior probabilities he assigns to the states before he
makes a measurement. Bob must make a measurement on the states he receives to attempt to
recover the encoded information.

The problem for Bob is to determine the best measurement to make. Which measurement
is best will depend on how the results are to be used, that is how the information was encoded
or what question about the signal states the measurement is designed to answer. For each such
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coding or question one can define a mathematical ‘figure of merit’ function which provides
a measure of how appropriate a given measurement strategy is. Bob’s task in finding his
optimal measurement is to maximize this function with respect to all possible measurements.
Commonly considered examples of this are the minimum error probability (or minimum Bayes
cost) [1-4] and the accessible information [4-7], both of which describe recovery of classical
information about the original message.

For some applications, Bob needs to use his measurement result to reproduce the
quantum signal. The objective is then that the new signal matches the original as closely
as possible. We must now consider optimal strategies for the combined measurement
and reconstruction process. The quality of these measurement-retransmission strategies is
associated with the fidelity F. This is the probability that a subsequent measurement on the
retransmitted state will confirm that it matches the original signal. The fidelity is a measure
of the amount of quantum information as opposed to classical information obtained from the
signal.

One motivation for a discussion of the fidelity of these processes is the question of
eavesdropping in quantum communication or cryptography, where an eavesdropper would
require both classical information about the signal and a good reproduction of that signal to
conceal their presence. Measurement and retransmission is by no means the only possible
attack on cryptographic protocols.

The fidelity can also be used as a figure of merit for many other processes where it is
desirable for the final state of a (real or hypothetical) system to match some ideal state as
closely as possible. An important example is state estimation where one uses a measurement
to determine the value of some continuous parameter(s) of the system. Fidelity is often used
as the optimality criterion when the parameters to be measured are the unknown parameters
of the density matrix of the system. In contrast we use the fidelity to describe how well we
can reproduce a finite set of discrete states, by a dual process consisting of a measurement
step followed by a reconstruction step.

It can be seen that estimation is a continuous variable analogue of our maximum fidelity
reproduction problem, in the same way as minimum cost estimation [1] can be seen as the
continuous version of optimal hypothesis testing [1]. Maximum fidelity estimation for the
case where all possible values of the continuous parameters are equally probable has been
studied [8]. This case is of particular relevance to the problem of optimal universal cloning
[9-14]. In a similar fashion, the problem we consider in this paper, that of maximizing fidelity
for a discrete set of possible states will be related to the question of state-dependent cloning
[12, 14].

No general condition is known for maximizing the fidelity of a measurement and
retransmission strategy for a known discrete set of signal states with arbitrary prior
probabilities, but the maximum fidelity has been found for specific cases. These cases are
when the possible signals form a set of symmetric qubit states [15], and where there are only
two possible signal qubit states [16]. Here we will describe the maximum fidelity strategy for
a mirror-symmetric set of three pure qubit states.

For the two previously solved cases [15, 16] the measurement strategy which minimizes
the probability of incorrectly identifying the states always maximizes the fidelity for the best
choice of retransmission states. This optimal strategy is not, however, unique for sets of
three or more symmetric states. It is therefore interesting to ask whether the strategy that
minimizes the error probability always maximizes the fidelity. If this is the case then our best
strategy is to identify the original signal state as well as we can and then select a corresponding
retransmission state. In this paper we establish that the fidelity is not always maximized by the
measurement strategy which minimizes the probability of erroneously identifying the signal
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state. We demonstrate this by maximizing the fidelity for the mirror-symmetric qubit states,
for which the minimum error strategy has recently been derived [17].

2. Fidelity

The previous work on maximum fidelity for symmetric states [15] established some important
results which we shall make use of. We shall use the notation contained in that work. The signal
states are denoted by [/;) with associated prior probabilities p; and the retransmission states
are |¢r). The measurement is described by its probability operator measure (POM) elements
I1;. These POM elements are operators which represent the probability of occurrence of each
possible outcome of a measurement. The probability P (k|j) of the outcome k occurring given
that the system was prepared in the state [v;) is

P (k1)) = (W ITTel ;). M
For the POM elements I to represent probabilities, they must be subject to the following
constraints:

(i) All the IT;’s are Hermitian.
(i1) Their eigenvalues are non-negative.
(ii1) The total probability of all outcomes for any input sums to 1:

=1, @)
k

To find the optimal measurement-retransmission strategy we need to express the fidelity
F as a function of the POM elements 1y, the retransmission states |¢;) and the set of possible
signal states {|v;), p;}. The fidelity is the probability that the state |¢y) selected on the basis
of the measurement outcome I1; will pass a test of the question ‘Is the state |;)?". This test
is described by the POM {|y; ) (¥; |, 1 — |v:) (¥}, where | ;) is the state of the original signal.
Thus F is given by

F =Y "1yl P (0 1 TLelw ) py. &
ok

This can be written as [15]

F = (¢|Oclopr) )
k

where the positive operator Oy is given by

O =Y 1) ITLly) (¥ p;. (5)
J

It is clear from this that the optimal retransmission states |¢) are the eigenvectors of the
operators Oy corresponding to the largest eigenvalue vy, of Oy.

If these optimal retransmission states are used, then the fidelity is given by the sum of the
largest eigenvalues of the Oy operators:

F=) u ©)
k

and we need only consider the maximization of the largest eigenvalues of Oy, subject to
the constraint that the operators IT; form a POM. In such a maximization each of the POM
elements [T can be assumed to be proportional to a pure state projector, since the action of any
mixed-state like element here would be identical to that of a number of rank 1 POM elements
corresponding to the same retransmission state.
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3. Mirror-symmetric state sets

We have recently described the minimum error strategy for a qubit which is known to be one
of a mirror-symmetric set of three pure qubit states [17]. Here mirror symmetric means that
the set of states {(|v/;), p;)} is invariant under the transformation

l+) — +[+) =) — —=I=) (N

so that the prior probability associated with any state is equal to the prior probability of its
mirror-symmetric counterpart.
The set of three mirror-symmetric pure qubit states can be written in its most general form

as
[¥1) = cosf]+) +sin6|—) pL=p
|¥2) = cosO|+) —sinf|—) P=p ®)
[¥3) = |+) p3=1-2p

where 0 <6 < Zand0 < p < 1.
The minimum error strategy was found to be of different form in two distinct domains of
p and 6. The solutions in these two domains are

for
1
Pz 2 +cosf(cos 6 +sinb) ©)
the minimum error measurement strategy is given by
M =300 +=DWH+ (=) =308 = -DH - (=D  [I3=0 (10
and for
1
(11D

P < .
2+ cosf(cosH +sinb)
the minimum error measurement strategy is given by
I = J(al+) + =)@ + (=)
I, = J(al+) — =)@+ — (=] (12)
3 = (1 —a?)|+)(+]
where a is the following function of p and 6:
pcos6sinf

=_- 77 13
a 1 — p(2 +cos29) (13)

At the boundary between the two domains, which is when the equality holds in the
condition (9), a = 1 and thus 13 = 0.

We must now find the maximum fidelity measurement strategy for these mirror symmetric
states to show that it is different from the minimum error strategy.

4. Maximizing fidelity for the mirror-symmetric state sets

To find the maximum fidelity for these mirror-symmetric sets of states we will follow a similar
method to that used for the symmetric states [15]. We attempt to write an explicit formula for
the fidelity in terms of some parameter set and find the maximum by differentiation.

To maximize the fidelity for these mirror-symmetric sets of states we choose a
representation of the operator Oy and find its eigenvalues. To do this we first obtain a
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general representation of the qubit POM elements. As we stated in section 2 we need only
consider elements of rank 1, that is, elements proportional to pure state projectors.
The elements of such a POM can be represented by the matrices

. 1 +cosf;  sin6; e
M = wy <sin Ore % 1 — cosby (14)

where the basis vectors are

) = (é) - = ((1’) (1s)

andogwkg%,—n <O <m, -5 <P <3
These POM elements are automatically Hermitian and positive. The remaining
completeness constraint (2) becomes equations for wy, 6; and ¢:

1= we=0 (16)
k
> wicost =0 a7)
k
Zwk sin Oe'?* = 0. (18)

k

The operators Oy, for a mirror symmetric set of three pure states become

2p cos?6(1 + cos 26 cos 6;) o
N sin“26 sin 0, cos
Oc=w | +1-2mQ+costy 7 keosgi | (19)
p sin?26 sin 6y cos ¢y 2p sin?0 (1 + cos 26 cos 6;)

The eigenvalues vy, of this matrix are given by

1
Yk = p(1 +cos26 cosby) + <§ — p) (1 +cos6y) £+ |:<p c0s 20(1 + cos 26 cos 6;)
Wk

1
2

2
1 2 dnp 2 2
M G (1+cos6y) | + p*sin*20sin’6,cos”dy (20)

of which the greater eigenvalue is clearly vy, .

From the form of these eigenvalues we see that the fidelity F is an even function of ;. This
means that any element with the parameters (wg, 6, ¢r) gives the same contribution to the
fidelity as would an element with the parameters (wy, —0, ¢x), and thus the same contribution
as the pair of elements (%, 6y, ¢x) and (%, —6x, ¢ ). Thus we can replace all of the elements
in a POM with such pairs of elements without changing the fidelity, and we need only find
the maximum fidelity for POMs consisting of such pairs. Such POMs satisfy condition (18)
automatically. Since there is now no condition restricting our choice of ¢, we are free to
select ¢ to maximize each eigenvalue v, independently. It is clear from examination of (20)
that the best choice is always ¢y = 0 and thus cos ¢ = 1. In truth we should have expected
such a symmetry of our measurement strategy, since this simply corresponds to the POM also
being both mirror symmetric and confined to the plane of the states {|v;)}.

Since the pair of elements corresponding to £-6; are equally weighted and each contributes
the same amount to the fidelity, we now use the parameter wy, to represent the combined weight
of the pair of elements with the same value of cos 6.
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We can then write the eigenvalues as

1
Ve, = wy [p (1+c0s20 cos 64) + (L — p) (1 +cos ) + ka] Q1)
where the functions Qy are given by
O = [pcos20 (1+cos20cosby) + (3 — p) (1 +cos ek)]2 + p?sin* 20 sin® 6. (22)
The POM constraints (16) and (17) allow us to simplify the fidelity F:
1 1
F:Xk:vk+=§+2k:ka,§. (23)

To find the stationary points of F, subject to the constraints (16, 17) on wy and 6; we shall
use Lagrange’s method of undetermined multipliers. We can construct the function G:

G=F+uo <I—Zwk)+a2 (Zwkcos(?k) (24)
k k

with the constraint (18) being irrelevant as this F' does not depend on ¢;. The full detail of
the maximization calculation can be found in appendix A, but the main points are summarised
here.

The equation g—g = 0 has four solutions for 6;: 6; = 0, 7w and £, where 2 is some
angle depending on the unknown multiplier op. This limits the number of elements in any
optimal POM to four.

The minimum value of wy, wy = 0, clearly corresponds to trivial zero operators. The
maximum value of wy for a mirror symmetric pair of elements arises from the positivity of the
POM elements and the completeness condition (2). These conditions impose a tight bound on
(+|TT¢|+) and (—|TT;|—), and thus on wy. If this bound is reached, then there can be only one
other element in the POM, which must be proportional to either |+) (+| or |—) (—| to satisfy the
completeness condition. Thus, if the optimal measurement strategy is composed of more than
three elements, then all of the elements must satisfy the equation gl—fk = 0 as well as g—g =0.

It is possible to show that there are no values of the unknown multipliers «; and «; which
simultaneously satisfy «‘fl_fk = 0 for all four solutions of g—g = 0, except in special cases where
F does not depend on 6; (for cos ¢y = 1).

Having established that the optimal strategy consists of three or less elements we simplify
the problem by applying the POM conditions (16) and (17) to obtain the most general three-
element mirror-symmetric POM. This POM has only one free parameter, cos €2, and it is now
a simple matter to maximize F. The optimal measurement strategy is always found to be one
or other of the two mirror-symmetric two-element strategies.

Obtaining the optimal retransmission states is simply a matter of finding the eigenvector
of Oy corresponding to the larger of its two eigenvalues. The determination of these states is
detailed in appendix B.

5. Complete maximum fidelity strategy

We summarize the results for the measurement—retransmission strategy maximizing the fidelity
for a mirror symmetric set of three pure states.
If

p(1 —cos20)[p(1 —cos20) +cos20] =0 (25)
then any POM consisting of elements of the form

. 1 + cos 6 sin 6,
M = wy < sin 6y 1 —cos Ok) (26)
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which satisfies POM conditions (16)—(18) with ¢, = 0 will maximize the fidelity. The optimal
retransmission state for each element is then given by

_1

i) = (V> +1) % (1) + Vil =) 27)
with Y} given by equation (B.2).

If
cos 26
_ S 0 28

p= 1 —cos26 P (28)
then the unique optimal measurement strategy consists of the two elements

o=+ e =1=)( (29)

and the optimal retransmission state is |+) if the result is Iy and |—) if the result is I1,.
If

cos 20
1 —cos26’
then the unique optimal measurement strategy consists of the two elements
ez = 3(14) + =D+ + (=D oz =30+ — =D+ = (=) 3D

with the optimal retransmission state for these elements given by

paz) = [1+ (V21— n)"] 2 [0 & (Vo2 + 1 = n)|—)] (32)

where 7 is given by

p > p #0, cos20 # 1 (30)

__2pcos20+1—2p
N 2p sin? 26

n

6. Comments on the optimal strategy

Where there is a unique maximum fidelity solution, the optimal measurement always has two
elements and is both invariant under the mirror symmetry (7) and confined to the plane of the
signal states. There are only two such POMs and when one gives maximum fidelity, the other
gives the least fidelity of all POMs confined to the plane of the Bloch sphere containing the
states. Where these two measurements give the same fidelity condition (25) holds, there is no
unique optimal measurement and any POM composed of elements in the plane of the states
will be optimal.

Condition (25) is obviously satisfied when there is only one possible signal state (p = 0)
and when all of the signal states are identical (0 = 0). It is also satisfied if the sum of the
density matrices of the states, each multiplied by the probability of not selecting that state,
sums to the identity matrix, as described by the equation

ST - pplwaw = 1. (33)
J

The importance of this final condition remains unclear, but the simplicity of (33) suggests that
it may have physical significance for our problem.

The retransmission states |¢) for the 6, = 0, 7 solution are simple to understand as they
are just the states that the POM elements project on to. The origin of the retransmission states
for the 6, = £7 case seems less transparent, but they are simply the states that the POM
elements project on to, rotated to increase their overlap with the a priori state of the signal.
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Figure 1. A comparison of the domains in which the 6y = £7 strategy is optimal for minimum
error (equation (9), above the dashed-dotted line) and for maximum fidelity (equation (30), to the
left of the solid line), in terms of the state parameters p and 6.

The hypothesis we sought to test, that the fidelity is always maximized by the minimum
error measurement strategy, must now be examined. It is clearly false as the ; = 0, 7 is never
a minimum error strategy, while it is often a unique maximum fidelity strategy. Furthermore,
the three-element minimum error strategy never maximizes the fidelity, save when any strategy
confined to the plane of the signal states maximizes the fidelity.

This leaves us to consider the 6, = £7 strategy. It gives minimum error uniquely when
(9) is true and maximum fidelity uniquely when (30) is true. However, we can see from
figure 1 that the conditions (9) and (30) bear little relation to each other, except that both are
satisfied for large enough p. Thus we can say that the maximum fidelity strategy is not the
same as, or even dependent on, the minimum error strategy.

There are two special cases of the previous work in [15] which are also covered by our
calculation here. Our work is in complete agreement with [15] in predicting that the maximum
fidelity strategy for two equiprobable states ( p= %) is the same as the minimum error strategy,
and that any POM confined to the plane of the signal states will be optimal for the trine states
( p= %, 0= 600). It is interesting to note that we predict the same solution for a much wider
class of state sets than just the trine states, so it may be possible to extend the solution for the
general set of symmetric states to a broader class of sets.

Finally, in the course of the solution for a set of three mirror-symmetric states we only
referred to the nature and number of the states themselves in finding the eigenvalues of our O
matrices. The only property of these eigenvalues that we used in deriving our solution was
that their sum depended on 6 and ¢ only via the functions cos 6; and cos?¢y. The rest of the
analysis was done using the coefficients of cos6; (A, B and C in the appended calculations)
and holds true for any form of these coefficients. This implies that for any set of qubit states
for which this eigenvalue sum has a similar dependence only on cos 6; and cosquk, the optimal
measurement strategy will again be either 6, = {:I:%} or 6y = {0, 7} (with cos¢ = 1), or
any set of elements in the linear plane if the fidelity of these two strategies is the same. In
particular this means our strategy maximizing the fidelity for a mirror-symmetric set of three
pure states is also the measurement strategy for maximizing the fidelity for a mirror-symmetric
set of any number of pure states sharing a common plane. The form of the condition (A.26)
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will obviously become more complex in terms of the original variables when there are more
states, but will be unchanged as a function of the coefficients of cos 6y (A.21).

7. Conclusions

The fidelity of a measurement and reconstruction strategy is defined as the average probability
that a subsequent measurement on the reconstructed state will identify it as being identical to
the original state. We sought to find the strategy which maximizes the fidelity for a signal, the
state of which is known to be a member of a mirror-symmetric set of three qubit states. This
was done by parametrizing the POM, evaluating the fidelity as a function of these parameters
and conducting a variational calculation using Lagrange’s method of undetermined multipliers
to identify the sets of elements which could constitute the maximum.

The optimal measurement strategy was found to be whichever of the two mirror-symmetric
two-element POMs gives the larger fidelity for a given set of states, and that any POM whose
elements lie in the plane of the states is optimal if these two strategies give the same fidelity.
The optimal retransmission states were found using an eigenvector equation (B.1).

This result also holds for a mirror-symmetric set of any number of pure qubit states which
are located on the same great circle of the Bloch sphere.

Unlike all previous solutions for maximum fidelity strategies, the minimum error
measurement strategy does not generally maximize the fidelity of a mirror-symmetric set
of three pure states.
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Appendix A. Derivation of the fidelity maximizing measurement

In attempting to maximize the fidelity F subject to POM conditions (16) and (17) it is helpful
to begin by using Lagrange’s method of undetermined multipliers. We construct the function

G:
G=F+aq <I—Zwk)+a2 (Zwkcosek). (A.1)
k k

Varying G with respect to wy gives us a restriction on the possible positions of the global
maxima and minima of G, which must be located either at a stationary point with respect to
Wy

G 1
— =Q} —a;+aycosf =0 (A.2)
awk
or at the maximum or minimum possible values of wy:
1
Wi:min = 0 Wikmax = T ¢ (A.3)
1+ | cos 6|

with this maximum arising from the fact that w; represents the combined weight of the pair
of POM elements corresponding to £6, and that the component of such a pair in either the
|+) or |—) direction cannot exceed 1. The minimum value of wy clearly corresponds to trivial
Zero operators.
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Since Qy is a function of cos ) only, differentiating G with respect to 6 gives
G Wi 7% 0 Qk

8_9k T2 %k Hcos Ok
at a stationary point of G. This has the non-trivial solutions

(—sin 9/() — O Wy sin Qk =0 (A.4)

sinfy =0= 06, =0o0rm (A.S5)
and
8Qk 1
=-2 ; A.6
0 cos G 20y (A-6)

as well as the wy = 0 solution corresponding to the element not being part of the POM.
To simplify further analysis we shall assign the coefficients of cos 6 in Oy to be

A=pcos20+ (3 —p)

B=psin®20=1-C=>0

C=pcos’20+(s—p)=1-B>0
so that Qy is given by
Ok = (A + Ccosb)* + B>(1 — cos® 6;).

We can then solve equation (A.6) to find the remaining values of 6; which satisfy g—g =
Since equation (A.6) contains only cos 6y terms, it is simplest to express the solution as a value
of cos 6, given in terms of our A, B, C coefficients as

1 A2+B2—C2)

[ AP

cos by =

—AC —asB | ———+——
( : O{%+BZ—C2

which can only take one value for a given POM since «; must have a single value for all of
the elements of one POM.

We can now say that any measurement maximizing the fidelity has at most four elements,
corresponding to the four solutions of g—g = 0 (A.4) for 6;, given by equations (A.5) and
(A.7). For each of these possible elements, either equation (A.2) holds (a stationary point of
G with respect to wy) or wy takes its maximum or minimum value.

Now we must consider whether it is possible to have all four of these elements present
in one POM, i.e. that none of the weight factors wy are zero for these elements. Clearly this
implies that none of them take their maximum values either, since the maximum value of wy
for an element (or mirror-symmetric pair of elements) is found by noting that the positivity
and completeness of the POM implies that neither the |+)(+| or |—)(—| component of any
element (or pair) can exceed 1. If any element saturates this bound, there can be only one
more non-zero element corresponding to either |+)(+| or |—)(—]| to satisfy the completeness
condition (2).

Since no weight factor wy can attain its maximum value when there are four non-zero
elements present in the POM, the equation (A.2) must be simultaneously satisfied for all four
elements. This occurs if there is a pair of values for «; and o, which will satisfy (A.2) for all
three solutions for cos ) obtained from (A.4).

For 6, = 0 and 7, equation (A.2) gives

0, =0:A+C|l=0; — (A.8)
h=m:|A—C|l=0o;+a (A9)

which fixes both «; and «, for any measurement strategy containing both these elements.
These values must satisfy the equation (A.2) for the value of cos 6; given by (A.7). Since the
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multipliers «; and a; can only take the values A, FC, respectively, or =C, F A, respectively,
for any values of A and C when (A.8) and (A.9) hold, it is simple to show that equation (A.2)
can only be satisfied for this value of cos 6; when either

A +B>—-C*=0 or B =0. (A.10)

Which of these two conditions is relevant depends on the relative magnitudes and signs of A
and C. Thus we see that we can only have a four-element POM in certain special cases.
Examining these special cases shows that in each of them Qy is the square of some linear

1
function of cos 6 which is either positive for all 6 or negative for all . If |0} | is any linear
function of cos 6, it can be shown by application of the POM conditions (16) and (17) that F/
does not depend on any cos 6, and thus the fidelity is constant for any measurement strategy
composed of elements confined to the plane of the states (that is for which cos ¢y = 1).

For the general case where F does depend on the strategy chosen we now know that there
is no strategy composed of four or more elements which can be a maximum or minimum of
the fidelity. Denoting the solution of equation (A.7) in the range 0 < 6y < 7 as 6; = €2, there
are two possibilities for three element strategies: case (i)

O =m, £Q 1>cos2>0 (A.11)
or case (ii)
Or =0, £Q —1 <cos <0. (A.12)
Both the two element measurement strategies which are mirror symmetric in this basis
are special cases of these three-element strategies, and are located at the edge of the domains
of the three-element strategies. The 6; = {0, 7} strategy corresponds to cos” Q = 1 in either
of the above cases, and the 6; = {:t%} strategy corresponds to cos 2 = 0.
For these three-element strategies the POM conditions (16) and (17) place a strict limit

on the values of the weight factors wy. Denoting the weights of the 6, = 0, & elements and
the 6y = £ pair by wy, w, and wgq, respectively, we have either

(i) forcos2 >0

wy +wg =1 wy; — wgcos =0 (A.13)
which gives
1 cos Q2
Y2 = T s T T i cos @ (A.19)
or
(i) forcos 2 <0
wy + wo =1 wy + wgocos2 =0 (A.15)
which gives
1 —cos 2
e Y T s (A.16)

Now we need simply differentiate F' with respect to cos €2 for each of these two strategies
and select the largest value of F' from any stationary points and the two limiting two-element
strategies. Both of these strategies automatically satisfy all of the POM conditions so we no
longer need to use Lagrange’s method of undetermined multipliers.

IF

Case (i). For the 6, = m, £ case the stationarity equation TeosD

squared to obtain
B*(C* — B> — A>)(1 +cos2)> = 0. (A.17)

= 0 can be rearranged and
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The only solutions to this equation are the aforesaid special cases (A.10) and cos 2 = —1,
which is not allowed since cos 2 > 0 in this case. We conclude that there are no stationary
points of F for this set of strategies and the maximum and minimum of the fidelity for these
strategies must correspond to the two-element strategies which define the end points of our
variation (i.e. cos 2 = 0 or 1).

Case (ii). Similarly for the 6; = 0, = case F_ — implies that

> dcos2
B?(C? — B> — A*)(1 — cos 2)> = 0. (A.18)

As before, the only solutions to this are our two special cases (A.10) and the single value
of cos 2 = 1, which is not in the domain for this strategy. We can thus conclude that there
are no stationary points of F for either strategy and our global maximum and minimum must
correspond to the 6; = {:I:%} and 6, = {0, 7} strategies which are at the end points of both
of our three-element strategy domains.

The fidelity for each of the two strategies which must constitute our maximum and
minimum are

o for 6 = {+%}
F=1+vB2+A? (A.19)
o forf, ={0,}
1 |[A+C| |A-C|
=_+ +

F = A.20
2 2 2 ( )

which is just equal to a half plus the larger of |A]| or |C|.

The larger of these two fidelities, (A.19) and (A.20), will be the maximum fidelity, and the
corresponding POM will be the optimal measurement strategy. For the 6; = {0, } strategy
to be optimal, we must have C > |A] since the fidelity of the 6;, = {:i:%} strategy is always
at least % + |A|. Thus the 6; = {0, 7} strategy is only uniquely optimal if

A’+B>—-C?<0 (A21)
which can be restated in terms of the original variables p and 6 as
cos 260
i A.22
p= 1 —cos26 ( )

The two strategies give the same fidelity when the relevant condition in (A.10) holds.
This corresponds to the special case where any POM consisting of elements confined to the
plane of the states is optimal. These conditions can be written in terms of p and 6 as

p(1 —cos20)[p(1 —cos20) +cos20] =0 (A.23)

that is either

p=0 (A.24)
or

cos20 =1 (A.25)
or

b= cos 20 (A26)

T 1—cos26°
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The meaning of two of these three cases is clear: equation (A.24) is the case where there is
only one possible signal state and equation (A.25) describes the case where all three states are
identical. The fidelity obviously cannot depend on the measurement strategy at all in these
cases. The third of these cases, equation (A.26), is less obvious. In fact it corresponds to the
identity

> A= pplyy;l =1 (A27)
J

that is when the sum of the density operators of the states normalized to the prior probability
of not selecting that state is the identity operator.

Appendix B. Retransmission states

In equation (4) we found the optimal retransmission states to be the eigenvectors of O, which
is given by equation (5). This determines the best retransmission state for any measurement
we choose to make, not only the optimal measurement. The optimal retransmission state
|¢x) depends on the possible states of the original signal {|v/;)} and on the direction of the
corresponding measurement operator I1. Since |¢y) does not depend on the weight (wy) of
this element or on the rest of the POM, |¢;) will be the optimal retransmission state for any
POM containing an element in this direction. This is useful as we need only find |¢;) for
each possible element, without having to consider the strategy in which the element occurs. It
could therefore be said that the optimal retransmission state |¢;) depends on the result of the
measurement (given by the direction of I1;) rather than on the measurement strategy (that is
the experiment whose outcome was k).

It is simplest to find the states {|¢y)} if we consider the following three cases separately:
Ok =0,0 < || <mand O, = 7.

For 6, = 0 our O matrix has eigenvectors |+) and |—). The larger eigenvalue belongs to
|+) if A+ C > 0. Since we found previously that we must have C > |A| for 6, = 0, 7 to be
the best strategy, it is always the case that the optimal retransmission state for the element I
is [+) when we have employed the optimal measurement strategy.

Similarly, for 6, = m our O matrix again has eigenvectors |+) and |—). The larger
eigenvalue now belongs to |—) if A — C < 0, which is again always true when the optimal
strategy includes a 6, = 7 element.

For any other value of 6, such as 6, = :t%, we must find the general solution for the
eigenvector corresponding to the larger eigenvalue of a 2 x 2 real Hermitian matrix. We need
only study nondiagonal matrices since the O; matrix is diagonal when 6; % 0 or 7 only for
trivial sets of states {|1/;), p;}. The equation for the unnormalized eigenvectors is

Re S\ (1) _ |
<Sk Pk) (Yki> — (Yki> @D

which gives a value for Y. in terms of the matrix elements

Pk _ Rk ‘/(Pk — Rk)2 +4S]z
Vi = + (B.2)

28k 285k

where the &+ in Y;+ in this equation corresponds to the two eigenvalues v, so the eigenvector
of interest is that which contains Y.

From the general form of O, given in equation (19) we can identify the elements of our
eigenvector equation as
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Ry =2p cos’ 0(1 +cos260 cosb) + (1 —2p)(1 +cosb)
P = 2psin®0(1 + cos 26 cos b;) (B.3)
Sk=p sin® 26 sin Ok

from which we can identify Y, and thus find and normalize |¢y). It can be readily appreciated

that the form of these states is not simple.
For the case where 6 = 7, we identify the parameter 7 as

Ry — P 2pcos20 + (1 —2p)
n=" = = (B.4)
2|8k| 2p sin® 260

then Y, z is given by

Yaz =+ (,/n2 11— n) . (B.5)

The optimal retransmission state for this strategy is given by

1
|b25) = —=[I+) + (Ya5)1-)]- (B.6)
1+ (Yer)

Itis clear from the formof Y.z (B.5) that the retransmission state given by (B.6) is, as expected,
on the same side of the Bloch sphere as the corresponding POM element ﬁi% . Further analysis
of the physical meaning of these states is possible by rewriting the n parameter as

(Horl+) = (=lp7|=)
n= — B.7)
2p sin? 260
where pr is the state Bob assigns to the signal before making his measurement and is given

by

pr ="y pilv)) (Wl (B.8)
J

It is clear that p7 is also a measure of the ‘average state’ of the signal sent by Alice
and that 7 is positive if the |+)(+| component of p7 is larger than the |—)(—| component (the
‘average state’ is closer to |+) than |—)) and negative if the converse is true. Furthermore we
see that |Yi% | is larger than one if 7 is negative and smaller than one if 7 is positive, so that

the retransmission states |¢i%) are shifted from |+) &+ |—) towards the ‘average state’, pr.
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